Q22. Show that $f(x) = \tan^{-1}(\sin x + \cos x)$ is an increasing function in $\left(0,\frac{\pi}{4}\right)$. $\binom{6}{4}$ **Sol.** Given that: $f(x) = \tan^{-1}(\sin x + \cos x)$ in $\left(0, \frac{\pi}{4}\right)$ $\binom{6}{4}$ Differentiating both sides w.r.t. *x*, we get $f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \cdot \frac{d}{dx}(\sin x + \cos x)$ $+(sin x +$ \Rightarrow $f'(x) = \frac{1 + (\sin x + \cos x)^2}{1 + (\sin x + \cos x)^2}$ $1 \times (\cos x - \sin x)$ $1 + (\sin x + \cos x)$ $x - \sin x$ $x + \cos x$ \times (cos x – $+(sin x +$ \Rightarrow $f'(x) = \frac{\cos x - \sin x}{1 + \sin^2 x + \cos^2 x + \sin^2 x}$ $1 + \sin^2 x + \cos^2 x + 2 \sin x \cos x$ $x - \sin x$ $x + \cos^2 x + 2 \sin x \cos x$ - $+\sin^2 x + \cos^2 x +$ $\Rightarrow f'(x) = \frac{\cos x - \sin x}{1 + 1 + 2 \sin x \cos x}$ $x - \sin x$ $x \cos x$ - $\frac{1}{x+1+2\sin x \cos x}$ \Rightarrow $f'(x) =$ $\cos x - \sin x$ $2 + 2 \sin x \cos x$ $x - \sin x$ $x \cos x$ - + For an increasing function $f'(x) \ge 0$ $\ddot{\cdot}$. $\cos x - \sin x$ $2 + 2 \sin x \cos x$ $x - \sin x$ $x \cos x$ - $\frac{1}{x+2 \sin x \cos x} \ge 0$ \Rightarrow $\cos x - \sin x \ge 0$ $\left[\because (2 + \sin 2x) \ge 0 \text{ in } \left(0, \frac{\pi}{4}\right)\right]$ \Rightarrow cos *x* \ge sin *x*, which is true for $\left(0, \frac{\pi}{4}\right)$ $\binom{6}{4}$ Hence, the given function $f(x)$ is an increasing function in $\left(0, \frac{\pi}{4}\right)$. **Q23.** At what point, the slope of the curve $y = -x^3 + 3x^2 + 9x - 27$ is maximum ? Also find the maximum slope. **Sol.** Given that: $y = -x^3 + 3x^2 + 9x - 27$ Differentiating both sides w.r.t. *x*, we get *dy dx* $=-3x^2+6x+9$ Let slope of the cuve $\frac{dy}{dx} = Z$ \therefore $z = -3x^2 + 6x + 9$ Differentiating both sides w.r.t. *x*, we get *dz* $\frac{dz}{dx} = -6x + 6$ For local maxima and local minima, $\frac{dz}{dx} = 0$ $-6x + 6 = 0 \implies x = 1$ \Rightarrow 2 2 $\frac{d^2z}{dx^2}$ = –6 < 0 Maxima Put *x* = 1 in equation of the curve *y* = $(-1)^3 + 3(1)^2 + 9(1) - 27$ $= -1 + 3 + 9 - 27 = -16$

Maximum slope = $-3(1)^2 + 6(1) + 9 = 12$

Hence, $(1, -16)$ is the point at which the slope of the given curve is maximum and maximum slope = 12.

Q24. Prove that $f(x) = \sin x + \sqrt{3} \cos x$ has maximum value at $x = \frac{\pi}{6}$.

Sol. We have:
$$
f(x) = \sin x + \sqrt{3} \cos x = 2\left(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right)
$$

\n
$$
= 2\left(\cos \frac{\pi}{3} \sin x + \sin \frac{\pi}{3} \cos x\right) = 2\sin\left(x + \frac{\pi}{3}\right)
$$
\n
$$
f'(x) = 2\cos\left(x + \frac{\pi}{3}\right); \ f''(x) = -2\sin\left(x + \frac{\pi}{3}\right)
$$
\n
$$
f''(x)_{x = \frac{\pi}{6}} = -2\sin\left(\frac{\pi}{6} + \frac{\pi}{3}\right)
$$
\n
$$
= -2\sin\frac{\pi}{2} = -2.1 = -2 < 0 \text{ (Maxima)}
$$
\n
$$
= -2 \times \frac{\sqrt{3}}{2} = -\sqrt{3} < 0 \text{ (Maxima)}
$$

Maximum value of the function at $x = \frac{\pi}{6}$ is

$$
\sin\frac{\pi}{6} + \sqrt{3}\cos\frac{\pi}{6} = \frac{1}{2} + \sqrt{3}\cdot\frac{\sqrt{3}}{2} = 2
$$

Hence, the given function has maximum value at $x = \frac{\pi}{6}$ and the maximum value is 2.

LONG ANSWER TYPE QUESTIONS

Q25. If the sum of the lengths of the hypotenuse and a side of a right angled triangle is given, show that the area of the triangle π

is maximum when the angle between them is $\frac{\pi}{3}$.

Sol. Let $\triangle ABC$ be the right angled \mathbf{A} triangle in which $\angle B = 90^\circ$ Let $AC = x$, $BC = y$ \therefore AB = $\sqrt{x^2 - y^2}$ $\angle ACB = \theta$ θ \overline{B} Let $Z = x + y$ (given) \mathcal{U} Now area of $\triangle ABC$, $A = \frac{1}{2} \times AB \times BC$

$$
\Rightarrow A = \frac{1}{2}y \cdot \sqrt{x^2 - y^2} \Rightarrow A = \frac{1}{2}y \cdot \sqrt{(Z - y)^2 - y^2}
$$

Squaring both sides, we get
\n
$$
A^2 = \frac{1}{4}y^2 [(Z - y)^2 - y^2] \Rightarrow A^2 = \frac{1}{4}y^2 [Z^2 + y^2 - 2Zy - y^2]
$$
\n
$$
\Rightarrow P = \frac{1}{4}y^2 [Z^2 - 2Zy] \Rightarrow P = \frac{1}{4} [y^2 Z^2 - 2Zy^3] \qquad [A^2 = P]
$$
\nDifferentiating both sides w.r.t. y we get
\n
$$
\frac{dP}{dy} = \frac{1}{4} [2yz^2 - 6zy^2] \qquad ...(i)
$$
\nFor local maxima and local minima, $\frac{dP}{dy} = 0$
\n∴ $\frac{1}{4} (2yz^2 - 6zy^2) = 0$
\n⇒ $\frac{2yZ}{4} (Z - 3y) = 0 \Rightarrow yZ(Z - 3y) = 0$
\n⇒ $yZ \neq 0 \qquad (∴ y \neq 0 \text{ and } Z \neq 0)$
\n∴ $Z - 3y = 0$
\n⇒ $y = \frac{Z}{3} \Rightarrow y = \frac{x + y}{3} \qquad (∴ Z = x + y)$
\n⇒ $3y = x + y \Rightarrow 3y - y = x \Rightarrow 2y = x$
\n⇒ $\frac{y}{x} = \frac{1}{2} \Rightarrow \cos \theta = \frac{1}{2}$
\n∴ $\theta = \frac{\pi}{3}$

Differentiating eq. (*i*) w.r.t. *y*, we have $\frac{u}{du^2}$ $rac{d^2P}{dy^2} = \frac{1}{4} [2Z^2 - 12Zy]$ d^2

$$
\frac{d^2P}{dy^2} \text{ at } y = \frac{Z}{3} = \frac{1}{4} \left[2Z^2 - 12Z \cdot \frac{Z}{3} \right]
$$

$$
= \frac{1}{4} [2Z^2 - 4Z^2] = \frac{-Z^2}{2} < 0 \text{ Maxima}
$$

Hence, the area of the given triangle is maximum when the angle between its hypotenuse and a side is $\frac{\pi}{3}$.

- **Q26.** Find the points of local maxima, local minima and the points of inflection of the function $f(x) = x^5 - 5x^4 + 5x^3 - 1$. Also find the corresponding local maximum and local minimum values.
- **Sol.** We have $f(x) = x^5 5x^4 + 5x^3 1$ $f'(x) = 5x^4 - 20x^3 + 15x^2$

For local maxima and local minima, $f'(x) = 0$

 \Rightarrow $5x^4 - 20x^3 + 15x^2 = 0$ $\Rightarrow 5x^2(x^2 - 4x + 3) = 0$ \Rightarrow $5x^2(x^2 - 3x - x + 3) = 0$ \Rightarrow $x^2(x - 3)(x - 1) = 0$ \therefore $x = 0, x = 1$ and $x = 3$ Now $f''(x) = 20x^3 - 60x^2 + 30x$ \Rightarrow $f''(x)_{at\,x=0} = 20(0)^3 - 60(0)^2 + 30(0) = 0$ which is neither maxima nor minima. \therefore *f*(*x*) has the point of inflection at *x* = 0 $f''(x)_{at x=1} = 20(1)^3 - 60(1)^2 + 30(1)$ $= 20 - 60 + 30 = -10 < 0$ Maxima $f''(x)_{at\,x=3} = 20(3)^3 - 60(3)^2 + 30(3)$ $= 540 - 540 + 90 = 90 > 0$ Minima The maximum value of the function at $x = 1$ $f(x) = (1)^5 - 5(1)^4 + 5(1)^3 - 1$ $= 1 - 5 + 5 - 1 = 0$ The minimum value at $x = 3$ is $f(x) = (3)^5 - 5(3)^4 + 5(3)^3 - 1$ $= 243 - 405 + 135 - 1 = 378 - 406 = -28$

Hence, the function has its maxima at $x = 1$ and the maximum value = 0 and it has minimum value at $x = 3$ and its minimum value is – 28.

 $x = 0$ is the point of inflection.

- **Q27.** A telephone company in a town has 500 subscribers on its list and collects fixed charges of $\bar{\mathfrak{c}}$ 300 per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of $\bar{\tau}$ 1.00, one subscriber will discontinue the service. Find what increase will bring maximum profit?
- **Sol.** Let us consider that the company increases the annual subscription by $\bar{\tau}$ *x*.

So, *x* is the number of subscribers who discontinue the services.

 \therefore Total revenue, $R(x) = (500 - x) (300 + x)$ $= 150000 + 500x - 300x - x^2$ $=-x^2+200x+150000$ Differentiating both sides w.r.t. *x*, we get $R'(x) = -2x + 200$

For local maxima and local minima, $R'(x) = 0$

$$
-2x + 200 = 0 \implies x = 100
$$

R''(x) = -2 < 0 Maxima

So, $R(x)$ is maximum at $x = 100$

Hence, in order to get maximum profit, the company should increase its annual subscription by $\bar{\tau}$ 100.

- **Q28.** If the straight line *x* cos $\alpha + y$ sin $\alpha = p$ touches the curve $rac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $+\frac{y}{l} = 1$, then prove that $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$.
- **Sol.** The given curve is $rac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $+\frac{y}{1^2} = 1$...(*i*) and the straight line *x* cos $\alpha + \gamma \sin \alpha = p$...(*ii*) Differentiating eq. (*i*) w.r.t. *x*, we get $rac{1}{a^2} \cdot 2x + \frac{1}{b^2} \cdot 2y \cdot \frac{dy}{dx} = 0$ \Rightarrow $\frac{x}{a^2} + \frac{y}{b^2} \frac{dy}{dx}$ a^2 b^2 *dx* $+\frac{y}{b^2}\frac{dy}{dx}=0 \implies \frac{dy}{dx}=$ 2 2 $-\frac{b^2}{a^2} \cdot \frac{x}{y}$ So the slope of the curve = 2 2 b^2 *x a y* $\frac{-b^2}{2}$. Now differentiating eq. (*ii*) w.r.t. *x*, we have

 $\cos \alpha + \sin \alpha \cdot \frac{dy}{dx} = 0$ \therefore $\frac{dy}{dx} = \frac{-\cos \alpha}{\sin \alpha} = -\cot$ $\frac{-\cos \alpha}{\sin \alpha}$ = $-\cot \alpha$

So, the slope of the straight line $= - \cot \alpha$ If the line is the tangent to the curve, then

$$
\frac{-b^2}{a^2} \cdot \frac{x}{y} = -\cot \alpha \implies \frac{x}{y} = \frac{a^2}{b^2} \cdot \cot \alpha \implies x = \frac{a^2}{b^2} \cot \alpha \cdot y
$$

\nNow from eq. (*ii*) we have $x \cos \alpha + y \sin \alpha = p$
\n
$$
\implies \frac{a^2}{b^2} \cdot \cot \alpha \cdot y \cdot \cos \alpha + y \sin \alpha = p
$$

\n
$$
\implies a^2 \cot \alpha \cdot \cos \alpha y + b^2 \sin \alpha y = b^2 p
$$

\n
$$
\implies a^2 \frac{\cos \alpha}{\sin \alpha} \cdot \cos \alpha y + b^2 \sin \alpha y = b^2 p
$$

\n
$$
\implies a^2 \cos^2 \alpha y + b^2 \sin^2 \alpha y = b^2 \sin \alpha p
$$

\n
$$
\implies a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = \frac{b^2}{y} \cdot \sin \alpha \cdot p
$$

\n
$$
\implies a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p \cdot p \quad \left[\because \frac{b^2}{y} \sin \alpha = p\right]
$$

\nHence, $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$

Alternate method:

We know that $y = mx + c$ will touch the ellipse

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ if } c^2 = a^2m^2 + b^2
$$

Here equation of straight line is $x \cos \alpha + y \sin \alpha = p$ and that

of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $+\frac{y}{12}$ =

$$
x\cos\alpha+y\sin\alpha=p
$$

$$
\Rightarrow y \sin \alpha = -x \cos \alpha + p
$$

$$
\Rightarrow \qquad y = -x \frac{\cos \alpha}{\sin \alpha} + \frac{p}{\sin \alpha} \qquad \Rightarrow \qquad y = -x \cot \alpha + \frac{p}{\sin \alpha}
$$

Comparing with $y = mx + c$, we get

$$
m = -\cot \alpha
$$
 and $c = \frac{p}{\sin \alpha}$

So, according to the condition, we get $c^2 = a^2m^2 + b^2$

$$
\frac{p^2}{\sin^2 \alpha} = a^2(-\cot \alpha)^2 + b^2
$$

\n
$$
\Rightarrow \frac{p^2}{\sin^2 \alpha} = \frac{a^2 \cos^2 \alpha}{\sin^2 \alpha} + b^2 \Rightarrow p^2 = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha
$$

Hence, $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$ Hence proved.

Q29. An open box with square base is to be made of a given quantity of card board of area *c*². Show that the maximum volume of 3

the box is $6\sqrt{3}$ $\frac{c^3}{\sqrt{c}}$ cubic units.

- **Sol.** Let *x* be the length of the side of the square base of the cubical open box and *y* be its height.
	- \therefore Surface area of the open box

$$
c2 = x2 + 4xy \implies y = \frac{c2 - x2}{4x} ...(i)
$$

Now volume of the box, V = x × x × y

$$
\implies V = x2y
$$

4 $x^2\left(\frac{c^2-x}{\sigma}\right)$ *x*

 $\Rightarrow V = x^2 \left(\frac{c^2 - x^2}{4x} \right)$

 \Rightarrow V = $\frac{1}{4} (c^2 x - x^3)$

$$
\frac{\frac{1}{y}}{\frac{1}{x} \cdot \frac{1}{x}}
$$

Differentiating both sides w.r.t. *x*, we get

⇁

$$
\frac{dV}{dx} = \frac{1}{4}(c^2 - 3x^2) \qquad ...(ii)
$$

For local maxima and local minima, $\frac{dV}{dx} = 0$
 $\therefore \quad \frac{1}{4}(c^2 - 3x^2) = 0 \Rightarrow c^2 - 3x^2 = 0$
 $\Rightarrow \qquad x^2 = \frac{c^2}{3}$
 $\therefore \qquad x = \sqrt{\frac{c^2}{3}} = \frac{c}{\sqrt{3}}$

Now again differentiating eq. (*ii*) w.r.t. *x*, we get

$$
\frac{d^2V}{dx^2} = \frac{1}{4}(-6x) = \frac{-3}{2} \cdot \frac{c}{\sqrt{3}} < 0 \quad \text{(maxima)}
$$

Volume of the cubical box $(V) = x^2 y$

$$
= x^{2} \left(\frac{c^{2} - x^{2}}{4x} \right) = \frac{c}{\sqrt{3}} \left[\frac{c^{2} - \frac{c^{2}}{3}}{4} \right] = \frac{c}{\sqrt{3}} \times \frac{2c^{2}}{3 \times 4} = \frac{c^{3}}{6\sqrt{3}}
$$

Hence, the maximum volume of the open box is

3 $6\sqrt{3}$ $\frac{c^3}{\sqrt{2}}$ cubic units.

Q30. Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.

Sol. Let *x* and *y* be the length and breadth of a given rectangle ABCD as per question, the rectangle be *y* revolved about side AD which will make a cylinder with radius *x* and height *y*.
\n
$$
\therefore
$$
 Volume of the cylinder $V = \pi x^2 y$...(i)
\nNow perimeter of rectangle $P = 2(x + y) \Rightarrow 36 = 2(x + y)$...(ii)
\nPutting the value of *y* in eq. (i) we get
\n
$$
V = \pi x^2 (18 - x)
$$

\n⇒
$$
V = \pi (18x^2 - x^3)
$$

\nDifferentiating both sides w.r.t. *x*, we get
\n
$$
\frac{dV}{dx} = \pi (36x - 3x^2)
$$
 ...(iii)

For local maxima and local minima $\frac{dV}{dx} = 0$ $\pi(36x - 3x^2) = 0 \implies 36x - 3x^2 = 0$ \Rightarrow $3x(12-x) = 0$ \Rightarrow $x \neq 0$ \therefore $12 - x = 0 \Rightarrow x = 12$ From eq. (*ii*) $y = 18 - 12 = 6$ Differentiating eq. (*iii*) w.r.t. *x*, we get 2 2 $\frac{d^2 \text{V}}{dx^2} = \pi(36 - 6x)$ at $x = 12$ 2 2 $\frac{d^2 \text{V}}{dx^2}$ = $\pi(36 - 6 \times 12)$
= $\pi(36 - 72)$ = $-36\pi < 0$ maxima

Now volume of the cylinder so formed = $\pi x^2 y$

$$
= \pi \times (12)^2 \times 6 = \pi \times 144 \times 6 = 864 \pi \text{ cm}^3
$$

 $3/2$

Hence, the required dimensions are 12 cm and 6 cm and the maximum volume is 864π cm³.

- **Q31.** If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?
- **Sol.** Let *x* be the edge of the cube and *r* be the radius of the sphere. Surface area of cube = $6x^2$

and surface area of the sphere = $4\pi r^2$

$$
\therefore \qquad 6x^2 + 4\pi r^2 = K(\text{constant}) \quad \Rightarrow \quad r = \sqrt{\frac{K - 6x^2}{4\pi}} \qquad \dots(i)
$$

Volume of the cube = x^3 and the volume of sphere = $\frac{4}{3}\pi r^3$

 \therefore Sum of their volumes (V) = Volume of cube + Volume of sphere

$$
\Rightarrow \qquad V = x^3 + \frac{4}{3}\pi r^3
$$

$$
\Rightarrow \qquad V = x^3 + \frac{4}{3}\pi \times \left(\frac{K - 6x^2}{4\pi}\right)
$$

Differentiating both sides w.r.t. *x*, we get

$$
\frac{dV}{dx} = 3x^2 + \frac{4\pi}{3} \times \frac{3}{2} (K - 6x^2)^{1/2} (-12x) \times \frac{1}{(4\pi)^{3/2}}
$$

$$
= 3x^{2} + \frac{2\pi}{(4\pi)^{3/2}} \times (-12x) (K - 6x^{2})^{1/2}
$$

\n
$$
= 3x^{2} + \frac{1}{4\pi^{1/2}} \times (-12x) (K - 6x^{2})^{1/2}
$$

\n∴ $\frac{dV}{dx} = 3x^{2} - \frac{3x}{\sqrt{\pi}} (K - 6x^{2})^{1/2}$...(ii)
\nFor local maxima and local minima, $\frac{dV}{dx} = 0$
\n∴ $3x^{2} - \frac{3x}{\sqrt{\pi}} (K - 6x^{2})^{1/2} = 0$
\n⇒ $3x \left[x - \frac{(K - 6x^{2})^{1/2}}{\sqrt{\pi}} \right] = 0$
\n $x \neq 0$ ∴ $x - \frac{(K - 6x^{2})^{1/2}}{\sqrt{\pi}} = 0$
\n⇒ $x = \frac{(K - 6x^{2})^{1/2}}{\sqrt{\pi}}$
\nSquaring both sides, we get
\n $x^{2} = \frac{K - 6x^{2}}{\pi}$ ⇒ $\pi x^{2} = K - 6x^{2}$
\n⇒ $\pi x^{2} + 6x^{2} = K$ ⇒ $x^{2}(\pi + 6) = K$ ⇒ $x^{2} = \frac{K}{\pi + 6}$
\n∴ $x = \sqrt{\frac{K}{\pi + 6}}$
\nNow putting the value of K in eq. (*i*), we get

 $6x^2 + 4\pi r^2 = x^2(\pi + 6)$ \Rightarrow 6*x*² + 4 $\pi r^2 = \pi x^2 + 6x^2 \Rightarrow 4\pi r^2 = \pi x^2 \Rightarrow 4r^2 = x^2$ \therefore 2*r* = *x* \therefore $x:2r = 1:1$

Now differentiating eq. (*ii*) w.r.t *x*, we have

$$
\frac{d^2V}{dx^2} = 6x - \frac{3}{\sqrt{\pi}} \frac{d}{dx} [x(K - 6x^2)^{1/2}]
$$

= $6x - \frac{3}{\sqrt{\pi}} \left[x \cdot \frac{1}{2\sqrt{K - 6x^2}} \times (-12x) + (K - 6x^2)^{1/2} \cdot 1 \right]$
= $6x - \frac{3}{\sqrt{\pi}} \left[\frac{-6x^2}{\sqrt{K - 6x^2}} + \sqrt{K - 6x^2} \right]$

where \sim 22

$$
= 6x - \frac{3}{\sqrt{\pi}} \left[\frac{-6x^2 + K - 6x^2}{\sqrt{K - 6x^2}} \right] = 6x + \frac{3}{\sqrt{\pi}} \left[\frac{12x^2 - K}{\sqrt{K - 6x^2}} \right]
$$

Put $x = \sqrt{\frac{K}{\pi + 6}} = 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\sqrt{\pi}} \left[\frac{\frac{12K}{\pi + 6} - K}{\sqrt{K - \frac{6K}{\pi + 6}}} \right]$

$$
= 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\sqrt{\pi}} \left[\frac{12K - \pi K - 6K}{\pi + 6} \right]
$$

$$
= 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\sqrt{\pi}} \left[\frac{6K - \pi K}{\sqrt{\pi K}} \right]
$$

$$
= 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\sqrt{\pi}} \left[\frac{6K - \pi K}{\sqrt{\pi + 6}} \right]
$$

$$
= 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\pi \sqrt{K}} [(6K - \pi K) \sqrt{\pi + 6}] > 0
$$

So it is minima.

Hence, the required ratio is 1:1 when the combined volume is minimum.

Q32. AB is a diameter of a circle and C is any point on the circle. Show that the area of \triangle ABC is maximum, when it is isosceles.

point on the circle with radius *r*.

Let
$$
AC = x
$$

\n
$$
\therefore BC = \sqrt{AB^2 - AC^2}
$$
\n
$$
\Rightarrow BC = \sqrt{(2r)^2 - x^2} \Rightarrow BC = \sqrt{4r^2 - x^2} \qquad ...(i)
$$
\nNow area of $\triangle ABC$, $A = \frac{1}{2} \times AC \times BC$
\n
$$
\Rightarrow A = \frac{1}{2}x \cdot \sqrt{4r^2 - x^2}
$$

$$
\mathcal{L}_{\mathcal{A}}(x) = \mathcal{L}_{\mathcal{A}}(x)
$$

Squaring both sides, we get

$$
A^2 = \frac{1}{4}x^2(4r^2 - x^2)
$$

Let $A^2 = Z$

$$
\therefore \qquad Z = \frac{1}{4} x^2 (4r^2 - x^2) \quad \Rightarrow \ Z = \frac{1}{4} (4x^2 r^2 - x^4)
$$

Differentiating both sides w.r.t. *x*, we get

$$
\frac{dZ}{dx} = \frac{1}{4} [8xr^2 - 4x^3] \qquad ...(ii)
$$

For local maxima and local minima *d*^Z *dx* $= 0$

$$
\therefore \frac{1}{4} [8xr^2 - 4x^3] = 0 \implies x[2r^2 - x^2] = 0
$$

\n
$$
\Rightarrow \frac{2r^2 - x^2}{x^2 - 2r^2} = 0
$$

\n
$$
\Rightarrow \frac{x}{2r} = 2r^2 \implies x = \sqrt{2}r = AC
$$

Now from eq. (*i*) we have

$$
BC = \sqrt{4r^2 - 2r^2} \quad \Rightarrow BC = \sqrt{2r^2} \quad \Rightarrow BC = \sqrt{2r}
$$

 $So \t AC = BC$

 $\ddot{\cdot}$

Hence, \triangle ABC is an isosceles triangle.

Differentiating eq. (*ii*) w.r.t. *x*, we get 2 2 $\frac{d^2Z}{dx^2} = \frac{1}{4} [8r^2 - 12x^2]$ Put $x = \sqrt{2}r$

2 2 $rac{d^2Z}{dx^2}$ = $rac{1}{4}[8r^2 - 12 \times 2r^2]$ = $rac{1}{4}[8r^2 - 24r^2]$ $=\frac{1}{4} \times (-16r^2) = -4r^2 < 0$ maxima

Hence, the area of $\triangle ABC$ is maximum when it is an isosceles triangle.

- **Q33.** A metal box with a square base and vertical sides is to contain 1024 cm³. The material for the top and botttom costs $\bar{\tau}$ 5/cm² and the material for the sides costs $\bar{\xi}$ 2.50/cm². Find the least cost of the box.
- **Sol.** Let *x* be the side of the square base and *y* be the length of the vertical sides. Area of the base and bottom = $2x^2$ cm² \therefore Cost of the material required = \bar{z} 5 \times 2*x*² $= 7 10x^2$

Area of the 4 sides = $4xy$ cm²

 \therefore Cost of the material for the four sides

$$
= ₹2.50 \times 4xy = ₹10xy
$$

Total cost
$$
C = 10x^2 + 10xy
$$
...(i)
New volume of the box = $x \times x \times y$

$$
\Rightarrow 1024 = x^2y
$$

∴
$$
y = \frac{1024}{x^2}
$$
...(ii)

Putting the value of *y* in eq. (*i*) we get $C = 10x^2 + 10x \times \frac{1024}{x^2}$ *x* $+ 10x \times \frac{1024}{x^2}$ \Rightarrow C = $10x^2 + \frac{10240}{x}$ Differentiating both sides w.r.t. *x*, we get *d*C $\frac{dC}{dx}$ = 20*x* - $\frac{10240}{x^2}$ $-\frac{10240}{x^2}$...(*iii*) For local maxima and local minima $\frac{dC}{dx} = 0$ $20 - \frac{10240}{x^2} = 0$ \Rightarrow 20 $x^3 - 10240 = 0$ \Rightarrow $x^3 = 512$ \Rightarrow $x = 8$ cm Now from eq. (*ii*) $y = \frac{10240}{(8)^2} = \frac{10240}{64} = 16$ cm $(8)^2$ 64 \therefore Cost of material used C = $10x^2 + 10xy$ $= 10 \times 8 \times 8 + 10 \times 8 \times 16 = 640 + 1280 = 1920$ Now differentiating eq. (*iii*) we get 2 2 d^2C $\frac{d^2C}{dx^2} = 20 + \frac{20480}{x^3}$ *x* + Put $x = 8$ $= 20 + \frac{20480}{(8)^3}$ $+\frac{20480}{(8)^3} = 20 + \frac{20480}{512} = 20 + 40 = 60 > 0$ minima

Hence, the required cost is $\bar{\tau}$ 1920 which is the minimum.

- **Q34.** The sum of the surface areas of a rectangular parallelopiped with sides *x*, 2*x* and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if *x* is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
- **Sol.** Let '*r*' be the radius of the sphere.
	- \therefore Surface area of the sphere = $4\pi r^2$ Volume of the sphere = $\frac{4}{2} \pi r^3$ $\frac{1}{3}$ πr The sides of the parallelopiped are *x*, 2*x* and $\frac{\pi}{3}$ *x* \therefore Its surface area = 2 $\left[x \times 2x + 2x \times \frac{x}{3} + x \times \frac{x}{3} \right]$ $\left[x \times 2x + 2x \times \frac{x}{3} + x \times \frac{x}{3}\right]$ = $2\left[2x^2 + \frac{2x^2}{3} + \frac{x^2}{3}\right]$ $\left[2x^2 + \frac{2x^2}{3} + \frac{x^2}{3}\right] = 2[2x^2 + x^2]$ $= 2[3x^2] = 6x^2$

Volume of the parallelopiped = $x \times 2x \times \frac{x}{3} = \frac{2}{3}x^3$ $x \times 2x \times \frac{x}{2} = \frac{2}{3}x$ As per the conditions of the question, Surface area of the parallelopiped + Surface area of the sphere = constant \Rightarrow 6*x*² + 4 πr^2 = K (constant) \Rightarrow 4 πr^2 = K – 6*x*² $r^2 = \frac{K - 6x^2}{4}$ 4 $-6x$ π ...(*i*) Now let $V =$ Volume of parallelopiped + Volume of the sphere $V = \frac{2}{3}x^3 + \frac{4}{3}\pi r^3$ $V = \frac{2}{3}x^3 + \frac{4}{3}\pi \left[\frac{K - 6x^2}{4}\right]^{3/2}$ 33 4 $x^3 + \frac{4}{3}\pi \left[\frac{K - 6x^2}{4\pi} \right]^{5/2}$ [from eq. (*i*)] ⇒ $V = \frac{2}{3}x^3 + \frac{4}{3}\pi \times \frac{1}{(4)^{3/2}\pi^{3/2}} [K - 6x^2]^{3/2}$ $V = \frac{2}{3}x^3 + \frac{4}{3}\pi \times \frac{1}{8 \times \pi^{3/2}} [K - 6x^2]^{3/2}$ $\frac{2}{3}x^3 + \frac{4}{3}\pi \times \frac{1}{8\times \pi^{3/2}}$ [K – 6x²] \Rightarrow $= \frac{2}{3}x^3 + \frac{1}{6\sqrt{\pi}}[K - 6x^2]^{3/2}$ π

Differentiating both sides w.r.t. *x*, we have

$$
\frac{dV}{dx} = \frac{2}{3} \cdot 3x^2 + \frac{1}{6\sqrt{\pi}} \left[\frac{3}{2} (K - 6x^2)^{1/2} (-12x) \right]
$$

$$
= 2x^2 + \frac{1}{6\sqrt{\pi}} \times \frac{3}{2} \times (-12x) (K - 6x^2)^{1/2}
$$

$$
= 2x^2 - \frac{3x}{\sqrt{\pi}} [K - 6x^2]^{1/2}
$$

For local maxima and local minima, we have $\frac{dV}{dx} = 0$

$$
\therefore \qquad 2x^2 - \frac{3x}{\sqrt{\pi}} (K - 6x^2)^{1/2} = 0
$$

$$
\Rightarrow \qquad 2\sqrt{\pi}x^2 - 3x(K - 6x^2)^{1/2} = 0
$$

$$
\Rightarrow \qquad x[2\sqrt{\pi}x - 3(K - 6x^2)^{1/2}] = 0
$$

Here $x \neq 0$ and $2\sqrt{\pi}x - 3(K - 6x^2)^{1/2} = 0$ \Rightarrow $2\sqrt{\pi}x = 3(K - 6x^2)^{1/2}$

$$
2\sqrt{\pi}x = 3(K - 6x^2)^{1/2}
$$

Squaring both sides, we get

$$
4\pi x^2 = 9(K - 6x^2) \implies 4\pi x^2 = 9K - 54x^2
$$

⇒
$$
4\pi x^2 + 54x^2 = 9K
$$

\n⇒ $K = \frac{4\pi x^2 + 54x^2}{9}$...(ii)
\n⇒ $2x^2(2\pi + 27) = 9K$
\n∴ $x^2 = \frac{9K}{2(2\pi + 27)} = 3\sqrt{\frac{K}{4\pi + 54}}$
\n $r^2 = \frac{K - 6x^2}{4\pi}$
\n⇒ $r^2 = \frac{\frac{4\pi x^2 + 54x^2 - 54x^2}{9 \times 4\pi} - 6x^2}{9 \times 4\pi}$
\n⇒ $r^2 = \frac{\frac{x^2}{9}}{9} \Rightarrow r = \frac{x}{3}$ ∴ $x = 3r$
\nNow we have $\frac{dV}{dx} = 2x^2 - \frac{3x}{\sqrt{\pi}}(K - 6x^2)^{1/2}$
\nDifferentiating both sides w.r.t. x , we get
\n $\frac{d^2V}{dx^2} = 4x - \frac{3}{\sqrt{\pi}} \left[x \cdot \frac{d}{dx} (K - 6x^2)^{1/2} + (K - 6x^2)^{1/2} \cdot \frac{d}{dx} \cdot x \right]$
\n $= 4x - \frac{3}{\sqrt{\pi}} \left[x \cdot \frac{1 \times (-12x)}{2\sqrt{K - 6x^2}} + (K - 6x^2)^{1/2} \cdot 1 \right]$
\n $= 4x - \frac{3}{\sqrt{\pi}} \left[\frac{-6x^2}{(K - 6x^2)^{1/2}} + (K - 6x^2)^{1/2} \right]$
\n $= 4x - \frac{3}{\sqrt{\pi}} \left[\frac{-6x^2 + K - 6x^2}{(K - 6x^2)^{1/2}} \right] = 4x - \frac{3}{\sqrt{\pi}} \left[\frac{K - 12x^2}{(K - 6x^2)^{1/2}} \right]$
\nPut $x = 3 \cdot \sqrt{\frac{K}{4\pi + 54}}$
\n $\frac{d^2V}{dx^2} = 4 \cdot 3 \sqrt{\frac{K}{4\pi + 54}} - \frac{3}{\sqrt{\pi}} \left[\frac{K - 12 \cdot \frac{9K$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} - \frac{3}{\sqrt{\pi}} \frac{\frac{4K\pi + 54K - 108K}{4\pi + 54}}{\sqrt{\frac{4K\pi + 54K - 54K}{4\pi + 54}}}
$$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} - \frac{3}{\sqrt{\pi}} \left[\frac{\frac{4K\pi - 54K}{4\pi + 54}}{\sqrt{\frac{4K\pi}{4\pi + 54}}} \right]
$$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} - \frac{3}{\sqrt{\pi}} \left[\frac{4K\pi - 54K}{\sqrt{4K\pi} \cdot \sqrt{4\pi + 54}} \right]
$$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} - \frac{6K}{\sqrt{\pi}} \left(\frac{2\pi - 27}{\sqrt{4K\pi} \cdot \sqrt{4\pi + 54}} \right)
$$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} + \frac{6K}{\sqrt{\pi}} \left[\frac{27 - 2\pi}{\sqrt{4K\pi} \cdot \sqrt{4\pi + 54}} \right] > 0
$$

$$
\left[\because 27 - 2\pi > 0 \right]
$$

 \therefore $\frac{d^2V}{dx^2} > 0$ so, it is minima. *dx*

Hence, the sum of volume is minimum for $x = 3 \sqrt{\frac{K}{4\pi + 54}}$ \therefore Minimum volume,

$$
\begin{aligned} \nabla \text{ at } \left(x = 3 \sqrt{\frac{K}{4\pi + 54}} \right) &= \frac{2}{3} x^3 + \frac{4}{3} \pi r^3 = \frac{2}{3} x^3 + \frac{4}{3} \pi \cdot \left(\frac{x}{3} \right)^3 \\ \n&= \frac{2}{3} x^3 + \frac{4}{3} \pi \cdot \frac{x^3}{27} = \frac{2}{3} x^3 + \frac{4}{81} \pi x^3 \\ \n&= \frac{2}{3} x^3 \left(1 + \frac{2\pi}{27} \right) \\ \n\text{Hence, the required minimum volume is } \frac{2}{3} x^3 \left(1 + \frac{2\pi}{27} \right) \text{ and } \\ \nx &= 3r. \n\end{aligned}
$$

OBJECTIVE TYPE QUESTIONS

Choose the correct answer from the given four options in each of the following questions 35 to 59:

Q35. The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is:

(a) $10 \text{ cm}^2/\text{s}$ (b) $\sqrt{3} \text{ cm}^2/\text{s}$

(c)
$$
10\sqrt{3}
$$
 cm²/s (d) $\frac{10}{3}$ cm²/s

Sol. Let the length of each side of the given equilateral triangle be *x* cm.

$$
\frac{dx}{dt} = 2 \text{ cm/sec}
$$

Area of equilateral triangle A = $\frac{\sqrt{3}}{4}x^2$
∴ $\frac{dA}{dt} = \frac{\sqrt{3}}{4} \cdot 2x \cdot \frac{dx}{dt} = \frac{\sqrt{3}}{2} \times 10 \times 2 = 10\sqrt{3} \text{ cm}^2/\text{sec}$
Hence, the rate of increasing of area = $10\sqrt{3} \text{ cm}^2/\text{sec}$.
Hence, the correct option is (c).
Q36. Aladder, 5 m long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides downwards at the rate of 10 cm/sec, then the rate at which the angle between the floor and the ladder is decreasing when lower end of ladder

is 2 metres from the wall is:

Now
$$
\cos \theta = \frac{BC}{AC}
$$

\n $\Rightarrow \qquad \cos \theta = \frac{x}{5}$

 $(\theta \text{ is in radian})$

Differentiating both sides w.r.t. *t*, we get

$$
\frac{d}{dt}\cos\theta = \frac{1}{5}\cdot\frac{dx}{dt} \Rightarrow -\sin\theta\cdot\frac{d\theta}{dt} = \frac{1}{5}\cdot\frac{\sqrt{21}}{20}
$$
\n
$$
\Rightarrow \qquad \frac{d\theta}{dt} = \frac{\sqrt{21}}{100} \times \left(-\frac{1}{\sin\theta}\right) = \frac{\sqrt{21}}{100} \times \left(-\frac{1}{\frac{AB}{AC}}\right)
$$
\n
$$
= -\frac{\sqrt{21}}{100} \times \frac{AC}{AB} = -\frac{\sqrt{21}}{100} \times \frac{5}{\sqrt{21}} = -\frac{1}{20} \text{ radian/sec}
$$

[(–) sign shows the decrease of change of angle]

Hence, the required rate =
$$
\frac{1}{20}
$$
 radian/sec

- Hence, the correct option is (*b*).
- **Q37.** The curve $y = x^{1/5}$ has at (0, 0)
	- (*a*) a vertical tangent (parallel to *y*-axis)
	- (*b*) a horizontal tangent (parallel to *x*-axis)
	- (*c*) an oblique tangent
	- (*d*) no tangent

Sol. Equation of curve is $y = x^{1/5}$

Differentiating w.r.t. *x*, we get
$$
\frac{dy}{dx} = \frac{1}{5}x^{-4/5}
$$

$$
\begin{aligned} \text{(at } x = 0) \qquad \qquad \frac{dy}{dx} &= \frac{1}{5}(0)^{-4/5} = \frac{1}{5} \times \frac{1}{0} = \infty \\ \frac{dy}{dx} &= \infty \end{aligned}
$$

 \therefore The tangent is parallel to *y*-axis.

Hence, the correct option is (*a*).

- **Q38.** The equation of normal to the curve $3x^2 y^2 = 8$ which is parallel to the line $x + 3y = 8$ is
	- (*a*) $3x y = 8$ (*b*) $3x + y + 8 = 0$

(c)
$$
x + 3y \pm 8 = 0
$$

 (d) $x + 3y = 0$

Sol. Given equation of the curve is $3x^2 - y^2 = 8$...(*i*) Differentiating both sides w.r.t. *x*, we get

$$
6x - 2y \cdot \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = \frac{3x}{y}
$$

3*x y* is the slope of the tangent \therefore Slope of the normal = $\frac{-1}{dy/dx} = \frac{-}{3}$ *y dy dx x* Now $x + 3y = 8$ is parallel to the normal Differentiating both sides w.r.t. *x*, we have $1+3 \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{1}{3}$ 3 $\frac{dy}{dx} = \ddot{\cdot}$ 1 $3x \quad 3$ *y* $\frac{-y}{3x} = -\frac{1}{3}$ \Rightarrow $y = x$ Putting $y = x$ in eq. (*i*) we get $3x^2 - x^2 = 8$ $\implies 2x^2 = 8$ $\implies x^2 = 4$ \therefore $x = \pm 2$ and $y = \pm 2$ So the points are $(2, 2)$ and $(-2, -2)$. Equation of normal to the given curve at (2, 2) is $y-2 = -\frac{1}{3}(x-2)$ \Rightarrow $3y-6=-x+2 \Rightarrow x+3y-8=0$ Equation of normal at $(-2, -2)$ is $y + 2 = -\frac{1}{3}(x + 2)$ \Rightarrow $3y + 6 = -x - 2 \Rightarrow x + 3y + 8 = 0$ \therefore The equations of the normals to the curve are $x + 3y \pm 8 = 0$ Hence, the correct option is (*c*). **Q39.** If the curve $ay + x^2 = 7$ and $x^3 = y$, cut orthogonally at (1, 1), then the value of '*a*' is: (*a*) 1 (*b*) 0 (*c*) – 6 (*d*) 6 **Sol.** Equation of the given curves are $ay + x^2 = 7$...(*i*) and $x^3 = y$...(*ii*) Differentiating eq. (*i*) w.r.t. *x*, we have $a \frac{dy}{dx} + 2x = 0 \Rightarrow \frac{dy}{dx} = -\frac{2x}{a}$ \therefore $m_1 = -\frac{2x}{a}$ $\left(m_1\right)$ $\left(m_1 = \frac{dy}{dx}\right)$ Now differentiating eq. (*ii*) w.r.t. *x*, we get $3x^2 = \frac{dy}{dx}$ \Rightarrow $m_2 = 3x^2$ $\left(m_2\right)$ $\left(m_2 = \frac{dy}{dx}\right)$

The two curves are said to be orthogonal if the angle between the tangents at the point of intersection is 90°.

 \therefore $m_1 \times m_2 = -1$ $\Rightarrow \frac{-2x}{a} \times 3x^2 = -1 \Rightarrow$ $6x^3$ $\frac{-6x^3}{a} = -1 \implies 6x^3 = a$ (1, 1) is the point of intersection of two curves. \therefore 6(1)³ = *a* So $a = 6$ Hence, the correct option is (*d*). **Q40.** If $y = x^4 - 10$ and if *x* changes from 2 to 1.99, what is the change in *y*? (*a*) 0.32 (*b*) 0.032 (*c*) 5.68 (*d*) 5.968 **Sol.** Given that $y = x^4 - 10$ $\frac{dy}{dx}$ = 4*x*³ $\Delta x = 2.00 - 1.99 = 0.01$ \therefore $\Delta y = \frac{dy}{dx} \cdot \Delta x = 4x^3 \times \Delta x$ $= 4 \times (2)^3 \times 0.01 = 32 \times 0.01 = 0.32$ Hence, the correct option is (*a*). **Q41.** The equation of tangent to the curve $y(1 + x^2) = 2 - x$, where it crosses *x*-axis is: (*a*) *x* + 5*y* = 2 (*b*) *x* – 5*y* = 2 (*c*) 5*x* – *y* = 2 (*d*) 5*x* + *y* = 2 **Sol.** Given that $y(1 + x^2) = 2 - x$...(*i*) If it cuts *x*-axis, then *y*-coordinate is 0. \therefore 0(1 + *x*²) = 2 – *x* \Rightarrow *x* = 2 Put $x = 2$ in equation (*i*) $y(1 + 4) = 2 - 2 \implies y(5) = 0 \implies y = 0$ Point of contact $=(2, 0)$ Differentiating eq. (*i*) w.r.t. *x*, we have $y \times 2x + (1 + x^2) \frac{dy}{dx} = -1$ \Rightarrow 2*xy* + (1 + *x*²) $\frac{dy}{dx}$ = -1 \Rightarrow (1 + *x*²) $\frac{dy}{dx}$ = -1 - 2*xy* $\therefore \quad \frac{dy}{dx} = \frac{-(1+2x)}{(1+x^2)}$ $(1 + 2xy)$ $(1 + x^2)$ *xy x* $- (1 +$ $\frac{dy}{(x^2 + x^2)}$ $\Rightarrow \frac{dy}{dx}$
(2,0) $\frac{dy}{dx_{(2,0)}} = \frac{-1}{(1+4)} = \frac{-1}{5}$ Equation of tangent is $y - 0 = -\frac{1}{5}(x - 2)$ \Rightarrow $5y = -x + 2 \Rightarrow x + 5y = 2$ Hence, the correct option is (a).